Spherical Maximal Operators on Radial Functions
نویسندگان
چکیده
منابع مشابه
Spherical Maximal Operators on Radial Functions
where dσ is the rotationally invariant measure on Sd−1, normalized such that σ(Sd−1) = 1. Stein [5] showed that limt→0Atf(x) = f(x) almost everywhere, provided f ∈ L(R), p > d/(d − 1) and d ≥ 3. Later Bourgain [1] extended this result to the case d = 2. If p ≤ d/(d − 1) then pointwise convergence fails. However if {tj}j=1 is a fixed sequence converging to 0 then pointwise convergence may hold f...
متن کاملSquare Functions and Maximal Operators Associated with Radial Fourier Multipliers
where (Pt)t>0 is an approximation of the identity defined by the dilates of a ‘nice’ kernel (for example (Pt) may be the Poisson or the heat semigroup). Their significance in harmonic analysis, and many important variants and generalizations have been discussed in Stein’s monographs [38], [39], [44], in the survey [45] by Stein and Wainger, and in the historical article [43]. Here we focus on L...
متن کاملOn Spherical Averages of Radial Basis Functions
A radial basis function (RBF) has the general form
متن کاملk-PLANE TRANSFORMS AND RELATED OPERATORS ON RADIAL FUNCTIONS
We prove sharp mixed norm inequalities for the k-plane transform when acting on radial functions and for potential-like operators supported in k-planes. We also study the Hardy-Littlewood maximal operator on k-planes for radial functions for which we obtain a basic pointwise inequality with interesting consequences. §
متن کاملOn Maximal Spherical Codes I
We investigate the possibilities for attaining two Levenshtein upper bounds for spherical codes. We find the distance distributions of all codes meeting these bounds. Then we show that the fourth Levenshtein bound can be attained in some very special cases only. We prove that no codes with an irrational maximal scalar product meet the third Levenshtein bound. So in dimensions 3 ≤ n ≤ 100 exactl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Nachrichten
سال: 1997
ISSN: 0025-584X,1522-2616
DOI: 10.1002/mana.19971870112